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                                        Abstract

Josephson junctions with an antiferromagnetic metal as a link are described. An

especially interesting case is provided by a barrier built on a giant magnetoresistance

(GMR) multilayer or by using doped manganites in the metallic A-phase. Such a junction

is predicted to display unusual properties. The  junction can be switched off by a

relatively small magnetic field. In addition, the amplitude of the Josephson current rapidly

oscillates as a function of the field.
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Studies of magnetic systems, such as giant magnetoresistance (GMR) structures

(see, e.g. [1,2]), mixed-valence manganites [3] , magnetic dilute semiconductors, etc.

have resulted in invention of  many new devices. In this paper we describe  two

phenomena for magnetic systems such as GMR layered structures  incorporated into  a

superconducting tunneling junction. Combination of superconductivity and magnetism in

electronics  turns out to be promising from the viewpoint of interesting applications.

In addition to common realization of Josephson contacts (i.e.,

S-I-S or  S-N-S  junctions with an insulating (I), or metallic (N) weak link connecting two

superconductors), we consider a magnetic metallic barrier. For two  superconductors with

the singlet pairing

(s or d-wave) a ferromagnetic barrier would present a strong obstacle  (in the absence of

the spin-orbital coupling),  because of the pair breaking effect of the exchange field on a

Cooper pair

In this paper we explore the Josephson contact built up of an array of

ferromagnetic layers with alternating directions of magnetization. To the best of our

knowledge, antiferromagnetic metallic weak links  have never been discussed in any

detail. Here we consider the specific situation  of  a GMR heterostructure with conducting

layers  ( spin- valve effect) . The Josephson currents flow along ferromagnetic layers.

Layers are weakly coupled electronically. Heterostructures of this kind are common in

various GMR applications and their fabrication by now is a well elaborated process [1 , 2]

. It is appropriate to mention here that such a structure realizes itself on the microscopic

level as the so-called A-phase in doped manganites.

It is shown theoretically in the next section that such S-AFM-S system results in a

junction, where the  amplitude of the Josephson current displays two remarkable features:

(1) current can be switched off by a relatively small external magnetic field, and
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(2) the amplitude  shows rapid oscillations as a function of the applied field. These

oscillations are originated from gradual weak canting of the magnetic moments in the

presence of applied field.

Consider the Josephson junction with two superconducting electrodes, S1, S2

connected by a magnetic metallic weak link formed by a multilayer structure described

above . Antiferromagnetic (AFM) ordering runs along the c-direction perpendicular to the

layers (A-phase).

We keep in mind the possibility of the  two realizations. The first one is   an

artificial (GMR) heterostructure  of alternating ferromagnetic and non-magnetic layers.

The non-magnetic layer can be either an insulator (e.g. Co-Al2O3-Co- ... system [4]) or

non-magnetic metal. The AFM alignment is supposed  for the adjacent ferromagnetic

layers .

Another exciting possibility is provided by the recently discovered metallic A-

phase in doped manganites. For example, doped compounds A1-x Srx MnO3 (A=La,Nd)

with x =0.55  or

Pr0.5 Sr0.5 MnO3 belong to this category [5-7]. Their conductivity displays a strong

anisotropic behavior. The magnetic structure corresponds to ferromagnetic atomic layers

with the AFM ordering along one of the cubic axis  (see the review [3]). The system is

thus quite similar to artificial GMR superlattices, although the physics is mainly

governed by the strong  Hund interaction which is the source of the double exchange

(DE)  mechanism for the ferromagnetism in manganites [8]. Concurrently, this

mechanism switches off coupling between antiferromagnetically aligned adjacent layers

in the A-phase. Note that ferromagnetism in manganites corresponds to the so-called  "

half-metallic" state,  i.e. , to the complete polarization of carriers.

To simplify the treatment below we assume that the distance between the

superconductors, L, is much larger than the proximity coherence length inside the

connecting barrier, so that L>> ζN ;
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 ζN = hvF/2πT. This allows one to use an effective  interface Hamiltonian between a

superconductor and a metal in the form:

                Hpair =V∆iΨ+(i)Ψ+(i)                                 (1)

where V is a matrix element for "conversion" of the pair condensate, ∆i, for the i-th

superconductor into two electrons at the metallic interface; Ψ(i) and Ψ+(i) are the field

operators for electrons of the barrier. With the use of Eq.(1) we find a correction to the

thermodynamic potential, δΩ, caused by the barrier; the current is obtained as δΩ/δϕ with

ϕ being  a phase difference between two superconductors' order parameters. As a result,

the problem  reduces to calculating the Cooper term (see, e.g., [9]) :

Κ ==== πT V2 ∆1
ω n

���� ∆2 dp���� dqexp(iqL)Π(q, iωn )        (2)

where

Π(iωn ,q) ====
σ, σ' ,σ'' ,σ'''
���� ( ˆ σ y )

σ ,σ' Gσ ,σ' (iωn ,p) ( ˆ σ y )
σ'' ,σ'''

* G
σ' , σ''' (−−−−iωn ,q −−−− p) ====

2 G↓↓↓↓↑↑↑↑ (iω n,p) G↑↑↑↑ ↓↓↓↓(−−−−iω n,q −−−− p) −−−− G↓↓↓↓ ↓↓↓↓(iωn,p) G ↑↑↑↑↑↑↑↑ (−−−−iωn,q −−−− p)����    
����    

����    
����    

         (2’)

In the above  ∆1,∆2  are the  order parameters for two superconductors

(∆ i ==== ∆ i exp(iϕi ) , ωn ==== (2n ++++1)πΤ  (we use the method of thermodynamic Green’

functions, see e.g. [9]), L is the distance from S1 to S2.

    For concretness we perform the  calculation for  the A- phase in manganites. We show

below that the results have quite a general character and are also applicable for AFM -

GMR multilayers  Consider a general case of the canted magnetic structure . The

Hamiltonian has the form (cf.[10]):
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H ==== t(p)apσ
++++

p
���� a

pσ'
++++ ++++ J HS(Q)a

pσ'
++++ ( ˆ σ z)σ' σ''

p, Q
���� a

p−−−− Q;σ''

++++ JHS(−−−−Q)a
pσ'
++++ ( ˆ σ z)σ 'σ''

p,Q
���� a

p −−−−Q;σ'' ++++ JHMa
pσ'
++++ ( ˆ σ x )

σ' σ''

p
���� a

p−−−− Q; σ''

 (3)

Here in t=t⊥+t , t⊥ and t  are electron hopping parameters for  the in-plane and

out-of plane motion, JH is the Hund’s coupling, and S(Q) is the Fourier component of the

AFM ordering along the c-directions; < Sz> = S(-1)n. The structural vector Q=(0,0,π/a)

reduces  the Brillouin zone (a is the lattice constant); M is the canted magnetic moment:

Si ==== (±±±± <<<< Sz >>>>,M x ),  Sz
2 ++++ Mx

2 ==== S(S ++++1) ≅≅≅≅ S2 . Orientations of M and S are fixed by a

magnetic anisotropy and the external field.

Using equation of motion:

(˜ ε −−−− t )akσ ==== J HS(±±±±Q)ˆ σ zak −−−−Q;σ ++++ JHM( ˆ σ x )σσ' akσ' (4)

and similar equation for k--> k+Q ,  where ˜ ε ==== ε −−−− t⊥⊥⊥⊥ , one can diagonalize the

Hamiltonian (3). The energy spectrum is:

˜ ε ==== ±±±± J H
2 S2 ±±±± 2JHMt ++++ t 2[[[[ ]]]]12

(5)

Remember that DE mechanism for manganites [8] exploits the large value of the Hund

interaction, JH ≈ 1eV [10] , so that JH >>t. Therefore electrons occupy only the two lowest

bands:

˜ ε 1,2 ≅≅≅≅ −−−−JHS ±±±± (M / S)t                                              (5’)
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By performing the canonical transformation in accordance with  the eigenvalues

of Eq. (5),  it is a straightforward to express operators  ˆ Ψ  and ˆ Ψ ++++  in Eq.(1) in terms of

the new  eigenfunctions. Quite generally, the transformation has the form:

          apσ ==== K σi
i
���� α ip (6)

where σ ≡≡≡≡ (↑↑↑↑↓↓↓↓), K σ1 ==== 0.5 1−−−− (M / S)[[[[ ]]]]
1

2 ; K ↑↑↑↑ 2 ==== −−−−K ↓↓↓↓ 2 ==== 0.5 1++++ (M / S)[[[[ ]]]]
1

2

With the use of Eqs. (2), (5), (6), we calculate the amplitude of the Josephson current, to

obtain:

        jm ==== Ae
−−−− L

ξN(T)  J0(βM/S) (7)

Here ξN  is the coherence length inside the barrier (see above),

A=[1-(M/S)2] γ , β ==== (t0 / Tc )(L / ξ0) ; ξ0= hvF/2πTc                       (7’)

In the tight-binding approximation t  = tOcos(pzdc) ; we will not write out the  explicit

expression for the coefficient  γ ∝  V 2  . Note that in Eq.(7) β>>1, since either t0>>Tc

(for manganites, see [10]), or  L>>ξ0    (see above) . If M/S is not exceedingly small, the

Bessel function J0(x) in (7) may be written in the asymptotic form:

J0(βM/S) ≈ (πβM / 2S)−−−−1/ 2  cos(βM/S - π/4).

Before discussing the expression (7), let us make several comments regarding

minor changes needed to make it applicable to the Josephson current through a GMR

structure.  Generally speaking,  GMR effects are sensitive to the number of the M-NM

bilayers, n (M and NM are  magnetic and non-magnetic layers, correspondingly). GMR

films with n up to n=50 are currently available. A saturation is already set in for n>10

[11],  see also the review [1].   Therefore, multilayer GMR structures with n >10

represents  a "bulk anisotropic crystal" quite similar to the A-phase in manganites. The

new structural vector Q would be Q=(0,0, π/d) where d is the thickness of single bilayer.
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In the Hamiltonian (3) JH must be replaced by J, the exchange coupling,  and S

corresponds to magnetization of the ferromagnetic layer. It is also clear that the

anisotropy in tunneling gets stronger: t <<t  and  the exchange  could be  comparable

with the bandwidth, t .  As a result, all four branches in the spectrum (5) contribute into

the current. In other respects, the calculation run in parallel  leading   to the same

expression (7); as for the parameters, they are different, first of all because  for the GMR

multilayers, unlike manganites, the out-of plane hopping  can be rather weak, especially

for systems with insulating Al2O3 layers. Note, however, that the inequality L>> ξ0   still

holds.

The multilayer system consisting of alternating Co and Al2O3 layers is an

example of such system. As a magnetic layers, one can use also the NiCo compound.

Realistic parameters for such GMR barrier  are  : dCo; dNiCo ≈30A, dAl2O3
≈6A, t0≈1-5K, L≈

103 A [4].

Equation (7) is the  main result of the paper. One sees that the antiferromagnetic

barrier in accordance with Eq. (7)  transfers the Josephson current; in this case the

exchange field does not break the Cooper pair. There is the oscillating factor in the

current amplitude J0( βM/S)∝ Cos (βM/S) which results in rapid oscillations in the

current through the barrier as the function of magnetization M. Since β >>1, a small M

induced by an external field, leads to a giant impact on the Josephson current. It is

remarkable that even small deviations from the exact AFM ordering lead to giant

oscillations of the amplitude of the current which passes through zero at

J0( βM/S)=0. At the further increase of the external field the

AFM-->FM transition takes place as usual for the GNR effect

(see e.g. [1,2]). For the GMR films, the low operating fields(order of

3-4 Oe [4] ) allow to cut-off  the junction in accordance with expression (7’) for the

amplitude A in (7). Manganites would require higher fields (≈ 5-10T).
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 Of much greater interest is the oscillatory dependence of the amplitude of the

Josephson current on an applied magnetic field.

We dubbed this as a Giant Magnetooscillations for the Josephson contact with the  A-

structure.

Note that this effect is entirely different from usual dampened Fraunhofer

oscillations  which occur due to the field penetrating into the barrier. In our case the field

direction can be such that only orientation of magnetic moments in the barrier is affected.

To conclude, we suggest experiments with the S - AFM - S  junction to verify the

picture described above. The use of ordinary superconductors, such as  Nb, would  be a

natural choice.
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